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Abstract 
 
Severe insulator damage is regularly observed near the one meter location and beyond in recent 
high energy, high current tests in a 4 meter railgun.  Analyses of the damaged insulator surfaces 
were conducted to determine the source of this damage.  Laser pulse heating tests were 
performed to simulate effects observed on the insulators. 
 
The analyses show that the primary damage to the insulators is in the form of epoxy pyrolysis, 
and glass fiber softening and liquification.  It is concluded that the damage source is plasma 
heating.  Plasmas are expected in these systems because of the presence of high rail-to-rail 
voltages behind the armature; the magnitude of these voltages reaches peak values near the one 
meter location where the damage is most severe.  In an earlier study, severe thermal damage was 
found on the steel rail surfaces adjacent to the damaged insulators; this damage was also 
attributed to plasma heating. 
 
Keywords: Railguns, insulator, pyrolysis, epoxy, glass fibers, plasmas, liquification, melting. 
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Introduction 
 
Gee and Persad [1] studied the damage of 
G10 insulators in a 7 meter medium caliber 
(4mm square bore) railgun.  The progress of 
the degradation was monitored during a 10 
shot sequence of firings.  The peak rail 
current listed is 940 kA.  They observed 
degradation in the form of thermally induced 
sublimation of the thermosetting epoxy 
matrix which is followed by mechanical 
removal of the newly exposed woven glass 
fibers.  Regions with the highest combined 
peak muzzle voltage and peak current 
showed the highest degradation.  Their 
muzzle voltage traces show that the zones of 
high degradation are in the transition region 
(the location where the armature/rail contact 
has changed from a liquid metal film to a 
plasma brush) indicating that the main 
source of damage is plasma heating. 
 
The present study is on a 0.7 m section of 
insulator taken from the most severely 
damaged section of a G10 insulator in a 4 
meter railgun.  An earlier study [2] was 
conducted on the metal rail liner erosion in 
the same railgun which produced the present 
damage on the adjacent G10 insulators.  The 
railgun is a high energy medium caliber 
railgun launcher (HEMCL) where the 
copper rails are lined with Glidcop and steel.  
Two primary rail surface erosion 
mechanisms are observed:  a.) groove 
formation from metal rail surface melting 
due to localized, pinched, currents flowing 
through the liquid armature/rail interface, 
and, b.) generalized, relatively uniform  
surface melting of the steel rails with heat 
affected zones beneath the melt layer.  The 
generalized, uniform surface melting is 
attributed to plasma formation behind the 
armature as a result of high fields that result 
as a consequence of induced emfs.  Unlike 
the Gee and Persad study, transition to a 
plasma brush does not occur in the present 

tests (as determined by the muzzle voltage 
traces) so transition is not the plasma source 
here.  Instead, the emfs responsible for the 
high fields that tend to generate plasmas 
behind the armature originate from rapid 
changes in rail current and from the motion 
of the armature.  A theoretical treatment of 
these induced emfs is presented in reference 
[3]. 
 
A similar analysis of rail erosion data from a 
1.1 MA railgun system [5] led to essentially 
the same conclusions that we obtained in 
reference [2] regarding the origin of the rail 
damage and the likelihood of rail-to-rail 
plasmas.  From the present observations of 
pyrolytic epoxy degradation and glass fiber 
softening and liquification in the insulator, it 
is determined that rail-to-rail plasmas are 
present behind the armature. 
 
Experimental 
 
The 0.7 meter G10 specimen, shown 
schematically in Figure 1, was obtained 
from a railgun test in the HEMCL system at 
the Institute for Advanced Technology, in 
Austin TX.  G10 is a composite comprised 
of E-glass fibers in an epoxy matrix.  The 
G10 specimen was removed from the gun 
after firing three solid aluminum armatures.  
In these experiments, the two 4 meter long 
copper rails of the EM gun were lined with 
GlidCop Al-25 plate over first ~one meter 
length of rail and with AISI 4130 steel plate 
over the remaining ~3 meters of rail length.  
The liner width and thickness are 4.1 cm and 
0.3 cm respectively. Peak currents were 
approximately 1.6 MA. 
 
Included in the present study are results 
from laser pulsing of a sample of the same 
G10 specimen.  Single laser pulses were 
applied at different locations on the 
specimen surface.  Laser pulse durations of 
1 millisecond were applied.  The laser spot 
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diameter is 3 mm.  Incident pulse energies at 
the surface were measured to be in the range 
of 0.05 to 0.41 Joule per square millimeter. 
 
The armature is made of 7076-T6 
aluminum.  In the HEMCL system, the 
armature dimensions accommodate a 
rectangular bore of approximately 4.5cm 
height (also rail height) and 6.5 cm width.  
The armature has a 1.0 cm wide cutout 
oriented along the bore axis.  The armature 
is attached to a Lexan cube which serves as 
a bore rider at the front of the armature. 
 
Specimen surfaces were examined using 
laser scanning confocal microscopy 
(LSCM), scanning electron microscopy 
(SEM), and energy dispersive spectroscopy 
(EDS).  LSCM is ideal for imaging the G10 
surfaces because the height variations 
associated with the cross weave pattern of 
the glass-fiber bundles. 
 
Thermogravimetric analysis (TGA) was also 
performed on a G10 sample to characterize 
the thermal degradation process. 
 
Results 
 
Regarding mechanical damage to the 
insulator from firing of the three shots, 
delamination of approximately 20 cm2 of the 
top layer of the 0.7 meter G10 specimen is 
observed near the edge closest to the breech 
(Figure 1).  There are several deep scratches 
adjacent to the delaminated area.  There is 
also general damage that is similar that 
described in Gee and Persad [1] in the 
transition region:  epoxy degradation and 
subsequent fiber removal, possibly by gas 
wash behind the high velocity projectile.  
There is no other indication of uniform 
mechanical damage to the insulator surface 
that would be expected from general 
mechanical contact with the moving 
projectile. 

LSCM images were recorded for the 
damaged G10 surface. The entire surface is 
blackened.  Images from the reverse side 
(unexposed side) of the G10 sample were 
also recorded for comparison.  Figure 2 is an 
image from the unexposed side of the G10 
sample.  It shows a typical junction between 
the raised bundles and the submerged cross 
bundles.  The original surfaces were ground 
smooth during manufacture so that most of 
the top surface glass fibers are short fiber 
segments held together with epoxy binder.  
Most of the glass fiber segments show some 
flattened portions from the grinding process 
before firing.  The junction in this image is 
filled with a large volume of epoxy matrix 
material.  This surface was gently cleaned 
with an alcohol soaked cotton swab and, 
unlike the exposed surfaces, no detectable 
effects of this cleaning were seen in the 
microscope images. 
 
Figure 3 is an LSCM image of the exposed 
face of the G10 at approximately the center 
of the 0.7 meter sample.  The sample surface 
appears roughened which probably accounts 
for some of the darkened appearance.  This 
image is representative of the entire 0.7 m 
G10 sample.  Figure 4 is an image from an 
area immediately adjacent to that in Figure 3 
after gentle cleaning with an alcohol 
moistened cotton swab. The polished 
appearance of the epoxy region between the 
fiber weave bundles is in stark contrast to 
that of Figure 3 and to that of the similarly 
polished area on the unexposed side (Figure 
2).  The ease with which a high polish is 
obtained indicates that a major softening of 
the epoxy has occurred.  The entire 0.7 
meter sample exhibited this softened feature. 
 
It is known that pyrolysis of glass reinforced 
composites produces epoxy decomposition 
products in the form of gases, oils, waxes 
and chars solid (heavily cross-linked 
residues) [4].  The nature of the soft, readily 
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polished surface in 3b is consistent with a 
wax decomposition product, so we will 
describe it in those terms in the remainder of 
this report. 
 
Figure 5 is an LSCM image of a G10 sample 
that was exposed to laser pulse heating.  As 
in the image in Figure 4, gentle cleaning 
with an alcohol moistened cotton swab  
produces a high polish on the epoxy regions 
between the fiber bundles indicating the 
formation of the same pyrolytic 
decomposition product (wax) of the epoxy 
as in the fired specimens. 
 
Figures 6 and 7 are typical examples of glass 
fiber softening and deformation found 
within pits that occasionally form at all 
locations on the surface of the 0.7 meter 
insulator specimen.  The twisting and 
stretching of the glass fibers and the 
rounding of fiber tips show that the fibers 
were heated above the glass transition 
temperature, Tg, (approximately 700C for 
E-glass).  The tips generally accumulate 
adherent coating of  debris including 
aluminum and copper. 
 
Figure 8 is an SEM image from the exposed 
top surface of a fired specimen showing 
glass softening with the tendency of the 
glass tips to bend in the direction of 
projectile motion.  Also shown in the lower 
left corner are layers of liquefied glass that 
appear to result from a dragging of liquefied 
glass in the direction of projectile motion 
over the underlying fibers.  This is probably 
a result of high velocity air flow behind the 
projectile.  All surfaces are covered in 
debris, including aluminum and copper. 
 
Laser pulsing also produces softening, 
deformation of fibers, and preferential 
melting of the glass fiber tips as observed in 
the fired specimens.  See Figure 9.  The 
softened tips exhibit rounding; at incident 

laser energies of 0.3J/mm2 and higher, there 
is obvious heating well above Tg, as 
indicated by the formation of glass globules 
(liquification) at the fiber tips.  These glass 
globules are not observed in the fired 
specimen (Figure 8); the absence of globules 
in the fired specimen is likely due to the 
presence of high rate air flow in a railgun. 
 
The blackened surface can be cleaned by 
brushing with an alcohol moistened cotton 
swab.  The surface fibers and fiber segments 
are easily removed.  The laser pulsed 
specimens show far less blackening, as 
expected, because the volume of volatiles 
from the 3mm diameter spot will be small 
relative to that expected in railgun firing. 
 
The most severe thermal damage to the 
insulator is localized at the two edges of the 
insulator that are immediately adjacent the 
two Glidcop/steel junctions.  These locations 
are indicated by the arrows in Figure 1.  
Approximately 2 to 3mm of insulator 
material is removed all along a 4 to 5 cm 
length at the insulator corners at these two 
locations.  Again, the damage is clearly 
thermal as indicated by numerous 
observations of fiber softening (fiber 
deformations) and large quantities of epoxy 
and glass fiber removal.  There is a 
relatively large amount of copper around 
these sites.  The location of this copper 
(Figure 1) indicates that it originates from 
melting of the copper rails that back the 
Glidcop and steel liners. 
 
Thermographic analysis results are shown in 
Figure 10.  The heating rate during these 
tests is 10C/min.  The onset of the 
degradation process occurs at ~ 380C where 
rapid weight loss reflects the evolution of 
volatile degradation products.  Thus, the 
general degradation of epoxy observed over 
the entire surface indicates that the surface 
temperature exceeded 380C everywhere.  
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The frequent observation of glass 
liquification shows that the surface actually 
exceeds 700C everywhere. 
 
Figure 11 is a micrograph showing the cross 
section of the steel liner at the 122 cm 
location which is approximately 30 cm 
downbore from the Glidcop/steel joint.  So it 
is located at roughly the center of the 0.7 
meter insulator specimen in this study.  It 
shows a steel melt layer of approximately 20 
microns thickness with an associated heat 
affected zone (HAZ) of approximately the 
same thickness.  This damage was produced 
with a single shot and is typical of the entire 
steel surface.  No edge groove is detectable, 
presumably because only a single shot was 
fired.  This uniform heating cannot be 
attributed to joule heating from current flow 
through the rails and armature because that 
current is known to be localized at the top 
and bottom edges of the conductors [2]. 
 
Results Summary 
 
Damage initiates just beyond the one meter 
location and is uniform over the entire 
length of the 0.7 meter insulator specimen.  
The exception to this uniformity is the 
particularly severe, localized thermal 
erosion of the insulator at the two edges that 
coincide with the Glidcop/steel junctions.  
Peak currents were approximately 1.6 MA 
in these tests. 
 
There is severe general damage to the epoxy 
over the entire surface due to pyrolysis.  
There is clear evidence that the glass fibers 
at the exposed surfaces were heated to 
temperatures exceeding Tg, the glass 
transition temperature of E-glass (~700C).  
Laser pulse heating was shown to duplicate 
the thermal damage observed in the insulator 
of the fired gun.  This damage included 
softening and rounding of the glass tips, as 
well as the formation of glass globules at the 

fiber tips at laser energies exceeding 
0.3J/mm2.  Laser pulse heating also 
produced the same soft waxy epoxy 
pyrolysis product seen in the fired insulator 
specimen.  Some of the features are similar 
to those reported by Gee and Persad[1] in 
the transition region. 
 
Data on the steel liner surface show a similar 
uniform heating damage over the entire 
surface of the steel.  The relative uniformity 
of the steel surface melting and heat affected 
zone is inconsistent with damage from 
current flow through the conductors because 
that current is known to be localized at the 
top and bottom edges of the rails and 
armatures[2]. 
 
Discussion and Summary 
 
The intense uniform thermal damage 
covering the entire surfaces of the insulator 
and the steel rails demonstrates that the heat 
source cannot be related in any way to the 
resistive heating of the metallic conductors.  
It is known from earlier studies that even the 
resistive heating in the conductors is 
extremely localized at the top and bottom 
edges of the rails and armatures.  Thus, the 
only sensible interpretation for the severe 
thermal damage is heating from plasmas that 
form behind the armature.  The same 
conclusion was drawn in an earlier study of 
rail liner surface damage [2]. 
 
The fact that laser pulse heating duplicates 
the damage seen in the HEMCL tests is an 
indication that the damage is caused by 
intense radiational heating.  Laser pulse 
heating also duplicates the damage to the 
steel liner [2].  The damage to the insulator 
is thus consistent with plasma radiation 
heating while that to the steel liner is 
attributable to a combination of plasma 
radiational heating and resistive heating via 
parasitic current flow through the plasma. 
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The exception to uniform damage occurs at 
the two insulator edges at the liner junctions 
where the thermal damage is particularly 
severe.  This localized damage is evidently 
associated with the presence of the 
Glidcop/steel junction and the associated 
vaporization of the copper rail beneath the 
liners.  It is unclear whether an existing 
plasma is locally enhanced by the copper 
volatiles to create the severe damage or 
whether a plasma is initiated by the 
combination of high fields and copper 
volatiles at the junction. 
 
It is concluded in the earlier study of steel 
damage in the HEMCL tests [2] that the 
plasma initiates somewhere near the joint 
and persists along the remaining length of 
the 4 meter HEMCL railgun.  An important 
fact is that there is no detectable damage to 
the lower melting point Glidcop (copper 
composite) which is on the breech side of 
the joint.  The Glidcop experiences the same 
current as the steel and is as heavily coated 
as the steel with molten aluminum from the 
armature.  So the observed damage cannot 
be attributed to current flow through the 
conductors or to the deposition of metal 
droplets, as is sometimes suggested. 
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Figure 1.  Schematic of G10 insulator specimen. 

 
 
 
 
 
 
 

 
Figure 2.  Micrograph of epoxy morphology 
and fiber bundles of G10 in the as-fabricated 
condition.  Surface was cleaned with alcohol 

moistened cotton swab. 
 
 
 
 

 
 
 
 
 
 

 
Figure 3.  Micrograph of G10 surface 

exposed to firing conditions (three shots). 
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Figure 4.  Micrograph of exposed G10 surface after 

gentle cleaning with an alcohol moistened cotton 
swab. 

 
 
 
 

 
Figure 5.  Micrograph of G10 after laser pulsing and 

cleaning with a cotton swab. 
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Figure 6.  Micrograph showing glass fiber 

damage in a pit on the G10 surface exposed 
to firing of three shots. 

 
 
 
 

 
 
 

 
Figure 7.  Another micrograph showing 
glass fiber damage in a pit on the G10 

surface exposed to firing of three shots. 

 
 
 
 

 
Figure 8.  Scanning electron microscope image of 

glass fibers on the top surface of the G10 exposed to 
three shots.  EDAX shows all surfaces are 

uniformly coated with a thin layer of debris 
containing aluminum and copper. 
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Figure 9.  Micrograph of G10 insulator surface exposed to laser pulse heating 

of 0.3 J/mm2.  Note softening and deformation of glass fibers and the 
formation of glass globules as a result of liquification of the fiber tips. 

 
 
 

 
 

Figure 10.  TGA results illustrating the onset of epoxy degradation at approximately 360C. 

Globules 
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Figure 11.  Micrograph showing typical severe 
thermal damage to the surface of the steel liner 

adjacent to the 0.7 meter insulator specimen.  This 
damage resulted from a single shot of the HEMCL 

railgun. 


